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L E T E R  TO THE EDITOR 

Finite-size corrections for the low-lying states of the integrable 
model with two- and three-particle interactions 

U Z Barievt 
Facult6 des Sciences, Univenitt de Tours, Parc de Grandmont, F.37200 Tours. France 

Received I9 November 1991 

Abalnd. The finite-size corrections to the ground ~ t a t e  and the energy of the low-lying 
states as a function of the sire L are calculaled for the one-dimensional integrable model 
with two- and three-panicle interaclions. It is shown that the conformal slmucture can be 
recovered if some extra conditions are imposed an the size and the ratio of the interaction 
parameters of the system. In this case the conformal properties of model are the same as 
those of the isotropic Heisenberg chain. 

The calculation of finite-size corrections to the free energy of a lattice spin system and 
the ground state energy and low lying part of the spectrum of a quantum spin chain 
has become a subject of considerable interest in the theory of integrable two- 
dimensional models. It is related with the fact that, due to development of the concept 
of conformal invariance [l, 21 it was shown [3-51 that the conformal anomaly and the 
scaling dimensions of primary conformal order parameters are directly accessible 
through the finite-size corrections of an affiliated system defined on infinitely long but 
finitely wide strips at criticality. Therefore the calculation of finite-size corrections 
permits us to determine these important parameters describing the critical behaviour 
of the system. Such a program was done for most integrable systems of classical and 
quantum statistical physics [6-151. 

In previous papers [16,17] we proposed a new integrable spin chain with two- and 
three-particle interactions and calculated exactly the ground state energy and the 
spectrum of excitations. In the present work we report the results of calculations of 
the finite-size corrections to these quantities. 

The model under consideration is described by the Hamiltonian 

where c j ( r )  are electron creation and destruction operators on the sublattice T ( T =  

1, 2, cjoJ = cjCl)), and = c/;,,q(,,  is the corresponding number operator. This 
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Hamiltonian can be diagonalized by solving the set of Bethe ansatz equations [16]: 

Lkj+ 1 O(k, -AB;a ' )=2r4  j =  1.2,. . . , n 

1 O ( A p - k j ; a ' ) -  1 0(Ap-Ay;2a')=2rJp 

m 

p=I 

m 

p = 1.2,. . . , m 
j - 1  7=1 

(2) 
O(k; a')=2tan-'(coth a ' t an fk )  -rS O(k; a ) < r  

e" = ( I  - U)-' 2a '=  a O < U < l .  

Here kj are the momenta of the electrons and AD are connected with the particle 
distribution between sublattices. 4 and Jp are integer (half-integer) numbers for even 
(odd) m and n - m - 1 respectively. 

A solution of (2) corresponds to an eigenstate which is characterized by the total 
number of electrons n and the number of electrons on the first sublattice m. The energy 
and the momentum of this state are, respectively 

It was shown in a previous paper [I71 that the excitations corresponding to the 
redistribution of particles between sublattices have a gap. This means that its contribu- 
tion in the finite-size corrections are exponentially small. Therefore we choose the 
numbers Jp as in the ground state 

Jp = p  -(m+ 1)/2 p = 1,2, .  . . , m m = n / 2 .  ( 5 )  

This corresponds to the symmetrical case where we have the same number of particles 
on each sublattice. Moreover, we may replace in (2) Z p  by LIT", dA u(A) where a ( A )  
is the density of values AD. Since the period of integration on A is a complete period 
we get the following equations by Fourier transforming (2) 

Lkj+ z O(k-kj)=2a4 
j = l  

where O'(k) =9'(k) is the function which is defined in [16] 

m 
9'( k) = ;+ 2 1 cos( nk)/[ 1 + exp(2lolln)l. 

n = ,  
(7) 

We choose two numbers I +  and I -  both equal to n/4mod 1, so that I+- I-= n and 
i ( I + - I - ) = n  and f ( I ' + l - ) = d .  For 4 we take all the numbers equal to (n/2)+ 
1)/2 mod 1 between I +  and I - .  It corresponds to a Fermi point to the right one. 

The equations (6) have the same structure of the corresponding equations in the 
Heisenberg chain. Therefore in calculating the finite-size effects we closely follow the 
method developed in [14,15]. We define the functions 
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With these definitions the Bethe ansatz equations ( 2 )  take the form 

1 
L X(k , )  =- 4 .  (9) 

Using the Euler-Maclaurin formula 

equations (8) and (9) can be written in the form: 

where the integration boundaries k" are determined by 

X ( k * )  = I"/L.  (12) 

The linear integral equation (11) is completed by the equations determining kt and 
k- which are obtained from (8) and ( 1 2 )  

Due to the linearity of (11) pL can be written in the following form 

wherep(k1 kt, k - )  and q(kl k+, k-) are the solutions of the following integral equations 

Equations (13)-(16) form a closed system and determine completely the state under 
consideration. The energy of this state according to (3). (IO) and ( 1 4 )  is 

with 

and 

e(k+ ,  k-)=sin k++ cos kq(kl k+, k-) d k  ik: 
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The system is in the ground state if the energy in (17) is minimal with respect to n / L  
and d f L. The procedure of minimization can be performed by the method used 
previously for the Heisenberg chain [ 141 and for the one-dimensional Hubbard model 
[IS]. It leads to the following result. At the minimum we have k+=-k-=Q,  
E(k+, k-)= E- (the energy density of the infinite system). Near this point the energy 
of the finite system (17) has the following form 

The momentum of the considered state is 

In these expressions p,(k) is the density of roots for the infinite system which was .%... "*:-" I ,  ", c,.- G+ = -1.- = n 

and 
>-*--:..-A :.. r ,  L1 ^ ^  " ̂ ^l..r:^-. -c:..*..---* a-.."*:.-- : ~ uc~ciii i i i i~u L U  LLUJ ab a ~uiuiiuii  U, unrg~an ~ U ~ L J Y M .  I.G. ~yuauuin ti-1 IVL - - y  

Q 
q = p d k )  d k  (22) 

Equation (20) gives the energy of the ground state if n - mL is minimal. Analogous 
calculations can be performed for the finite-size corrections to the energy of the 
low-lying states where excitations are introduced in the vicinity of the Fermi points. 
We characterize the holes and particles in the vicinity of 1: and I ; .  For the energy 
and momentum of this state we obtain 

2v 
=p(o)+L ( N +  - N - )  

where 
N +  = 1: - 1; N - = x  l ~ - ~ l ~ .  ( 2 5 )  

P h 

The expressions for the ground state (20) and for the spectrum of low lying 
excitations are not of the conformal form since the coefficient of the term proportional 
to l /L2 is still dependent on L for the arbitrary value q. This phenomenon is known 
already for the Heisenberg chain in the extemal field [14] and is thought to be connected 
with the possibility of a consistent definition of the continuum limit for the system. In 
our case the spectrum will be analytic if q is rational. Then we can choose n = qL in 
the expression for the energy (20) and n =An + q L  in the expression for the excited 

and the conformal dimensions (X, S) of the operators associated with these excited 
states: one has simply to compare (20) and (23) with the predictions of the conformal 
theory [3-S,13]. We have c = 1 and 

...... / m * \  1- .L:- ^^^^  *I.̂  ^^^:^^^ I l n ,  -..A I.?,, I.̂..- *I.- ,̂...q--"l ,,",,"."I., 
bldlTS (LJ). 111 LIUS LdbC LLLC cAprc;aaLurrJ (Lv) ~ L I U  { L J )  I I P Y C  ulr ~ Y I ~ ~ L Y I U I O L  YL.Y...O.J L. 

s(An, d)  = And. 
These formulae are analogous to those for the Heisenberg chain in the extemal 

field 1141. There, however, such abnormal behaviour of the Heisenberg chain is the 
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result of the presence of a magnetic field. In our'case it is the intemal property of the 
model we consider. It can be expected that a generalized soluble model containing an 
arbitrary number of sublattices [18] has an analogous behaviour. 
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